Globalwits

Sunday, 12 July 2020

Pulse Oximetry : Peripheral arterial oxygen saturation (SpO2)


A pulse oximeter is a small device that can measure the oxygen saturation in your blood. Pulse oximetry is a measure of how much oxygen is in the blood.
Pulse oximetry is a non-invasive method of measuring the oxygenation level in the blood.
Pulse oximetry is useful for people with chronic lung or heart conditions, who need to monitor how well oxygen is being sent from the heart and lungs out to the furthest parts of the body. 
To use a pulse oximeter, you'll clip the device on your toe, finger, or earlobe — here's to use it properly so you can get an accurate reading. 
Pulse oximeters can be used to gauge warning signs for chronic lung or heart conditions, and may help determine whether you should seek medical attention.



What does a pulse oximeter measure? 
A pulse oximeter measures the oxygen saturation of your blood. Essentially, this percentage is a calculation of how much oxygen is in the blood, with 100% being 'fully saturated' and the optimal level. 
And while this simple non-invasive medical tool is available over the counter in many pharmacies, it's not necessary for most people. 
"Unless you have a chronic heart or lung condition that affects your oxygen saturation on a regular basis, most individuals don't need one in their home.
Those with lung or heart conditions — such as chronic obstructive pulmonary disease (COPD) or heart failure — may be prescribed home oxygen therapy by their doctor, and a pulse oximeter can help them to monitor whether the use of oxygen at home is improving their condition or not.
In fact, oxygen saturation by itself is often not the best indicator of medical conditions, and other symptoms are just as important to tell your doctor. 
Other warning signs of low blood oxygen levels may include:  
  • Increased heart rate
  • increased breathing rate
  • Feeling shortness of breath or gasping for air
  • Inability to do an activity that you did before without getting out of breath
How does a pulse oximeter work? 
Every system and organ in the body needs oxygen to survive. Without oxygen, cells begin to malfunction and eventually die. Cell death can cause severe symptoms and ultimately lead to organ failure.
The body transports oxygen to the organs by filtering it through the lungs. The lungs then distribute oxygen into the blood via haemoglobin proteins in red blood cells. These proteins provide oxygen to the rest of the body.
Pulse oximetry measures the percentage of oxygen in haemoglobin proteins, called oxygen saturation. Oxygen saturation usually indicates how much oxygen is getting to the organs.
Normal oxygen saturation levels are between 95 and 100 percent. Oxygen saturation levels below 90 percent are considered abnormally low and can be a clinical emergency.
Oxygen saturation can drop for many reasons, including:
  • suffocation
  • choking
  • infections, such as pneumonia
  • drowning
  • diseases, such as emphysema, lung cancer, and lung infections
  • inhaling poisonous chemicals
  • heart failure or a history of heart attacks
  • allergic reactions
  • general anaesthesia
  • sleep apnoea
Pulse oximeters work by shining a light through a relatively transparent area of the skin. The light shines through to a detector positioned on the other side of the skin.
For example, when a pulse oximeter is clipped onto a finger, one side of the clip shines the light, and the other detects it.
The amount of light absorbed by the blood indicates the oxygen saturation. A pulse oximeter does not directly measure oxygen saturation but instead uses a complex equation and other data to estimate the exact level.
Benefits
Pulse oximeters are useful for people who have conditions that affect oxygen saturation. For example, a sleep specialist might recommend a pulse oximeter to monitor the night-time oxygen saturation level of someone with suspected sleep apnoea or severe snoring.
Pulse oximetry can also provide feedback about the effectiveness of breathing interventions, such as oxygen therapy and ventilators.
Some doctors use pulse oximetry to assess the safety of physical activity in people with cardiovascular or respiratory problems, or may recommend that a person wears a pulse oximeter while exercising. A doctor may also use pulse oximetry as part of a stress test.
Some hospitals also use pulse oximeters for particularly vulnerable patients. For instance, infants in neonatal intensive care units may wear pulse oximeters, which can alert staff of a drop in oxygen saturation.
A drop in oxygen saturation in infants in neonatal intensive care units may be detected using pulse oximetry.
Some benefits of pulse oximetry include:
  • monitoring oxygen saturation over time
  • alerting to dangerously low oxygen levels, particularly in new-borns
  • offering peace of mind to people with chronic respiratory or cardiovascular conditions
  • assessing the need for supplemental oxygen
  • monitoring oxygen saturation levels in people under anaesthesia
  • indicating dangerous side effects in people taking drugs that affect breathing or oxygen saturation
Pulse oximeters are now widely available to buy online, so some people without specific risk factors may use them.Bottom of Form
What to expect
Pulse oximetry devices are non-invasive and carry no serious risks. Some people experience minor irritation, including skin redness and sensitivity.
If fitted very tightly and used for a prolonged period, pulse oximeters can cut off oxygen from surrounding vessels. Anyone who experiences numbness, tingling, or changes in skin color should promptly notify a doctor.
The main risk of pulse oximetry is a false reading. The accuracy of pulse oximeters depends on a correct fit, and minor changes in their positioning can produce an inaccurate reading. A person who rolls over in their sleep may loosen the device, causing it to give a false alert.
Oxygen saturation may also dip for brief periods due to other factors, such as a change in sleeping position or momentary breath-holding. A pulse oximeter gives an alert even when the drop is temporary and harmless.
For people with health anxiety, or whose doctors have not helped them understand the role of a pulse oximeter, this can cause unnecessary worry.
Conversely, pulse oximeters can give some people a false sense of security. They do not provide alerts for all possible oxygen issues, and cannot serve as a substitute for other forms of monitoring.
People using pulse oximeters should discuss the risks with a doctor and should maintain a record of the readings over time. Changes in readings, particularly in response to environmental changes, sometimes signal a health problem.
People interested in using consumer-grade pulse oximeters should discuss their plans with a doctor before investing in a device.
Limitations
Some factors can reduce the accuracy of a pulse oximeter reading, including:
  • changes in the pulse
  • carbon monoxide poisoning, which may not produce an alert in a pulse oximeter
  • bilirubin levels
  • lipids in blood plasma
  • interference from external light or color, including nail polish
  • having cold hands or poor circulation
People who use pulse oximeters to monitor oxygen saturation should not rely on the oximeter as a substitute for subjective experience.
People experiencing difficulty breathing, shortness of breath, dizziness, or other signs of possible oxygen deprivation should seek medical attention.
To get the most accurate reading on a pulse oximeter, there are a few simple steps, according to the World Health Organization:  
Position the probe correctly. Depending on the device, this will usually be on the finger, toe, or earlobe. Make sure it is well-fitted, and not being forced on: for example, try the second toe rather than the big toe. If the probe is too loose or too tight, it may allow extra light in, which will impact the reading.
Make sure you're sitting still. Shaking or shivering will affect the reading, and may make it seem much lower than it actually is. 
Remove any nail polish. If you're wearing coloured nail polish, this might affect the reading. Finger tattoos or henna dye can also affect the reading: in this case, choose a different finger, toe, or earlobe. Cold fingers or toes can also cause false readings. 

No comments:

Post a Comment